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G Forgacs 
Department of Physics, Clarksan University, Potsdam, NY 13699, USA 

Received 29 May 1991 

Abstract. The unbinding transition of a directed semiflexible polymer whose fluctuations 
are controlled by bending rigidity is studied in 1 + 1 dimensions. The chain is modelled by 
a restricted solid-on-solid model with a short-ranged substrate potential. All the statistical 
and thermodynamic properties are evaluated exactly. In particular, the phase diagram is 
determined and is compared with the case when fluctuations are controlled by surface 
tension. 

In the present work we study the behaviour of a directed polymer chain in the vicinity 
of an attracting substrate. A directed chain can propagate only in the positive direction 
of a given axis, which we choose to be the x-axis and take it parallel to the substrate. 
Experimentally such chains result when the polymer is subject to a flow field [ I ] .  In 
two dimensions, the transverse fluctuations perpendicular to the substrate are restricted 
to (say) the z-direction. In this (1  + 1)-dimensional geometry, the  chain may be thought 
of as an interface dividing two separate phases (see figure I ) .  Indeed, due to the 
analogy with interfaces, the theoretical description of the fluctuations of these chains 
in terms of various solid-on-solid (SOS) modelst involves surface tension. 

Using the SOS model (with surface tension) it has recently been shown that at a 
well defined temperature the directed polymer unbinds from attracting line defects or 
one-dimensional substrates [3]. This adsorption-desorption transition is second order; 

' t  

Figure 1. A typical configuration o f  a directed polymer in the restricted solid-on-solid 
model. Heavy lines of unit length denote individual monomers and for a given value of x 
there can be only a single monomer in the vertical direction. The chain is grafted at one 
end to the substrate. 

- 
t Far a review of SOS models see, for example, [2]. 
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the relative number of monomers attached to the line defect vanishes linearly when 
the transition is approached from below. If attraction between monomers is included, 
instead of the second-order transition the chain may unbind via a first-order transition 
into a collapsed phase [4]. 

As a separate development, the fluctuations of membranes are also actively being 
studied [5]. These fluctuations are known to be driven by bending rigidity 161. A 
'membrane' in 1 + 1  dimensions is then equivalent to a semiflexible polymer. It is 
known that certain linear macromolecules, such as DNA, may have a large persistence 
length, in which case rigidity has to be incorporated into the study of their statistical 
behaviour. The unbinding of semiflexible polymers in 1 + 1 dimension has been studied 
within the SOS model using a number of approximate techniques, like Flory approxima- 
tion, scaling arguments, numerical transfer matrix methods and Monte Carlo simula- 
tions [7-91. 

In the present work we study the unbinding of semiflexible polymers for the case 
of short-ranged binding potentials. We use a restricted SOS (RSOS) model (see below), 
which allows the evaluation of the partition function of the chain exactly. The resulting 
phase diagram for the transition shows a number of distinct features when compared 
with the case when the fluctuations are driven by surface tension. 

Consider the chain shown in figure 1. Let the chain be grafted with its left end to 
the line defect, which is put at z =O. The statistical weight of a given configuration of 
the polymer is expressed by a Boltzmann factor, exp(-E{nj]/T), with the energy 

L--l L--l L 

E { n ; J = J  E I(nj+,-ni)-(n,-n,-,)I+K 1 I(n;+i-n;) l-~ 1 Sn,,o. ( 1 )  
i=, ; = I  ,=o 

Here i measures the (integer) steps along the x-axis. Vertical bars denote absolute 
value. The integer-valued height variables, ni, are measured along the z-direction and 
vary between zero and N,. They describe the transverse fluctuations of the chain. The 
first term in ( I ) ,  which is proportional to the discretized second derivative with respect 
to z, is the bending energy; J is the bending stiffness. The second term describes 
fluctuations due to surface tension. The third term, with u>0, describes the wall 
attraction due to the substrate. We take the Boltzmann constant to be unity. When 
J = 0, the model defined by (1) has been extensively used to study wetting phenomena 
in 1 + 1  dimensions [2]. Here we are interested in fluctuations due to bending rigidity, 
and, therefore put K = 0. 

The elements of the transfer matrix associated with (1) have to be labelled by a 
pair of height variables and can be written as 

r(",+,,",,.(",.",.,)- - Wl(",,,-",)-(",-",.,llK~,,;~ (2)  

where w =e-"' and K =e"". In the existing studies of semiflexible polymers in terms 
of the restricted SOS (RSOS) model the restriction is imposed on the difference of the 
slope of the height variables. Using the discrete slope variables u ; = ( n , + , - n , ) ,  the 
exponent of w in (2) becomes Iui-ui-,/. In the RSOS model this difference takes on 
values 0, 1. Since the difference of the ni variables itself still can take on any value, 
the transfer matrix has dimensionality N i  with all its elements different from zero. As 
a consequence, the largest eigenvalue and the corresponding eigenvector can be 
determined only by using approximate methods [7]. In the continuum version of the 
model the eigenvalue equation reduces to a partial differential equation [8], and one 
has to impose boundary conditions on both the n and U variables. In  what follows, 
we impose restrictions on the difference of the n variables and allow ( n ' - n )  to take 
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on only the values 0 and * l .  This automatically restricts the difference of the slope 
variables Iui-vi-,l to the values 0, 1.2. With this modification many elements of the 
transfer matrix become zero by definition. The eigenvalue problem for T is still more 
complicated than in the case of wetting, but it can be shown by simple substitution 
that the following ansatz for an eigenvector solves all the eigenvalue equations: 

for n = n'=O 

for n a 1. 
&"".= b,  e for  n = G , n ' = i  (3)  

e-"'' I I"" a("-"') ~- 

Since this expression, as a function of the index nn' does not have a node, it is a good 
candidate for the largest eigenvector of T. Inserting (3) into the eigenvalue equation, 
and fixing the normalization of 4 by putting a, = 1, it follows that b, = a- ,  . Denoting 
the eigenvalue corresponding to (3) by A, one obtains the following system of equations 
for the unknowns bo ,a-8 ,a , ,p ,A:  

Kbo+ K W R - ~  e-" = Ab, (4) 

KwbO+~w2a_,  e-'= Aa, ( 5 )  

wa, e'+w + w 2 a _ ,  e-'= ha, ( 6 )  
wa, e'+ 1 + m a _ ,  e-'=A (7) 

w 2 a ,  e'+w+a_,e-q=Aa-, .  (8) 

A 3 - 3 A Z +  A[ 1 - w 4 + 2 (  1 - w z )  cosh p ]  - (U ' -  1 ) 2 =  0. (9) 
Finaiiy the parameter p can be eiiminated From iSj, using equaiions (4j and ( j j .  Tie 
unbinding transition takes place at p = 0, which is equivalent to a transition temperature 
Tu = T ( K ,  U). As can be seen from (9). for small deviations from the transition 
hip) = A(0) +constant x p2. As a consequence, the free energy also contains a piece 
quadratic in p, and, therefore, the specific heat has a jump at the transition, which is 
then second order. For T > Tu, the eigenstates of the transfer matrix are extended and 

unbound phase is at the edge of the continuum determined by A(O), which can be 
easily determined from (9) 

From the last three equations A can be expressed as a function of w and p as 

ihe eigenvdiues corm i.oniinu.ui-il iii ip,e ;imii ,y m. The ;aig.esi eigen.va;.ue in ihe 

A(0) = 1 +io[ w +-I. 

1 + o [ w  + a 1  

(10) 

Inserting this expression into (4) and ( 5 )  with p=O one obtains the phase boundary 
between the bound and unbo~nd p h ~ e s  

(11) K =  
l + W 2  

The phase diagram is shown in figure 2 together with the one obtained when the 
unbinding is controlled by the surface tension term in (1) (i.e. J = 0). Figure 2 shows 
the phase diagram for both positive and negative values of J and K that is for w > 1 
and U <  1. (When J = O  in (1). o In the semiflexible region ( J Z O ,  K>O, 
w < 1) there is not a big difference between the two cases; actually for w = 1 the two 
curves attain the same value. For w > 1, which can be called the plastic region, 
fluctuations driven by the first and second derivative of the curve z(x) lead to completely 
different results. It is easy to understand this difference between the two cases. Figure 
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Figure 2. Phase diagram of the unbinding transition. Solid line: JfO, K = O  in equation 
(I), corresponding to unbinding controlled by bending rigidity. Dashed line: J = 0. K # 0 
in equation (I), corresponding to unbinding controlled by surface tension. 

L ( b l  

nnn 
Flgurel Typical configuration ofthe chain in the plastic phase. ( 0 )  J = 0,  K # 0 in equation 
(I), ( b )  JfO, K = O  in equation (I). 

3 shows configurations of the polymer within the RSOS model in the limit of infinite 
w. In the case J = 0, K # 0, shown in figure 3 ( n )  the chain benefits from getting further 
and further away from the substrate. (Note that the chain is always grafted with one 
of its ends to the substrate.) In this situation one needs an infinitely strong potential 
U or K to bind the chain. In the case J # 0, K = 0 (figure 3 ( b ) )  there is a macroscopic 
number of monomers attached to the substrate even if U = 0, so the chain is bound 
even at K = 1.  

Once the largest eigenvalues and the corresponding eigenvectors are determined, 
all the relevant quantities of the system can be calculated. Approaching the unbinding 
transition from below, the mean position of the chain from the substrate, I = ( n )  diverges 
linearly as I-  I/p. This defines the critical exponent JI = 1 [2]. The mean fluctuation 
amplitude, or roughness, or perpendicular correlation length, which is defined by 

(12) 

also diverges linearly with p, giving vL = 1 for the appropriate critical exponent. Another 
important length scale is the longitudinal (or parallel) correlation length, t,,, whose 

2 112 L = [ ( ( n - ( n ) )  )I 
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definition is 

Calculating the correlation function on the left-hand side of (13) in the bound phase 
close to the transition, one finds that diverges quadratically with p, giving U,, = 2 
for the appropriate critical exponent. Finally, the relative number of monomers attached 
to the substrate vanishes linearly as the transition is approached. 

In summary, we considered a simple RSOS model for a semiflexible polymer in 1 + 1 
dimensions. The fluctuations of the chain are controlled by bending rigidity. All the 
statistical and thermodynamic properties of the chain can be calculated exactly. In 
particular, the phase diagram and the relevant critical exponents at the second-order 
unbinding transition have been determined. The exponent values are the same as for 
the unbinding (wetting) transition of an interface driven by surface tension. In the 
plastic phase, however, the two models differ substantially. A similar model has been 
studied, using a variety of approximate methods in [7], where the restrictions of the 
RSOS model have been imposed on the slope variables, instead of the height variables. 
In that model the authors found a first order unbinding transition in the limit of infinite 
rigidity. In the present model this rather peculiar transition is not present. 

The author acknowledges useful conversations with Th M Nieuwenhuizen and V 
Privman. 
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